217 lines
6.7 KiB
Go
217 lines
6.7 KiB
Go
|
// Copyright 2016 - 2023 The excelize Authors. All rights reserved. Use of
|
||
|
// this source code is governed by a BSD-style license that can be found in
|
||
|
// the LICENSE file.
|
||
|
//
|
||
|
// Package excelize providing a set of functions that allow you to write to and
|
||
|
// read from XLAM / XLSM / XLSX / XLTM / XLTX files. Supports reading and
|
||
|
// writing spreadsheet documents generated by Microsoft Excel™ 2007 and later.
|
||
|
// Supports complex components by high compatibility, and provided streaming
|
||
|
// API for generating or reading data from a worksheet with huge amounts of
|
||
|
// data. This library needs Go version 1.16 or later.
|
||
|
|
||
|
package excelize
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
"time"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
nanosInADay = float64((24 * time.Hour) / time.Nanosecond)
|
||
|
dayNanoseconds = 24 * time.Hour
|
||
|
maxDuration = 290 * 364 * dayNanoseconds
|
||
|
roundEpsilon = 1e-9
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
daysInMonth = []int{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
|
||
|
excel1900Epoc = time.Date(1899, time.December, 30, 0, 0, 0, 0, time.UTC)
|
||
|
excel1904Epoc = time.Date(1904, time.January, 1, 0, 0, 0, 0, time.UTC)
|
||
|
excelMinTime1900 = time.Date(1899, time.December, 31, 0, 0, 0, 0, time.UTC)
|
||
|
excelBuggyPeriodStart = time.Date(1900, time.March, 1, 0, 0, 0, 0, time.UTC).Add(-time.Nanosecond)
|
||
|
)
|
||
|
|
||
|
// timeToExcelTime provides a function to convert time to Excel time.
|
||
|
func timeToExcelTime(t time.Time, date1904 bool) (float64, error) {
|
||
|
date := excelMinTime1900
|
||
|
if date1904 {
|
||
|
date = excel1904Epoc
|
||
|
}
|
||
|
if t.Before(date) {
|
||
|
return 0, nil
|
||
|
}
|
||
|
tt, diff, result := t, t.Sub(date), 0.0
|
||
|
for diff >= maxDuration {
|
||
|
result += float64(maxDuration / dayNanoseconds)
|
||
|
tt = tt.Add(-maxDuration)
|
||
|
diff = tt.Sub(date)
|
||
|
}
|
||
|
|
||
|
rem := diff % dayNanoseconds
|
||
|
result += float64(diff-rem)/float64(dayNanoseconds) + float64(rem)/float64(dayNanoseconds)
|
||
|
|
||
|
// Excel dates after 28th February 1900 are actually one day out.
|
||
|
// Excel behaves as though the date 29th February 1900 existed, which it didn't.
|
||
|
// Microsoft intentionally included this bug in Excel so that it would remain compatible with the spreadsheet
|
||
|
// program that had the majority market share at the time; Lotus 1-2-3.
|
||
|
// https://www.myonlinetraininghub.com/excel-date-and-time
|
||
|
if !date1904 && t.After(excelBuggyPeriodStart) {
|
||
|
result++
|
||
|
}
|
||
|
return result, nil
|
||
|
}
|
||
|
|
||
|
// shiftJulianToNoon provides a function to process julian date to noon.
|
||
|
func shiftJulianToNoon(julianDays, julianFraction float64) (float64, float64) {
|
||
|
switch {
|
||
|
case -0.5 < julianFraction && julianFraction < 0.5:
|
||
|
julianFraction += 0.5
|
||
|
case julianFraction >= 0.5:
|
||
|
julianDays++
|
||
|
julianFraction -= 0.5
|
||
|
case julianFraction <= -0.5:
|
||
|
julianDays--
|
||
|
julianFraction += 1.5
|
||
|
}
|
||
|
return julianDays, julianFraction
|
||
|
}
|
||
|
|
||
|
// fractionOfADay provides a function to return the integer values for hour,
|
||
|
// minutes, seconds and nanoseconds that comprised a given fraction of a day.
|
||
|
// values would round to 1 us.
|
||
|
func fractionOfADay(fraction float64) (hours, minutes, seconds, nanoseconds int) {
|
||
|
const (
|
||
|
c1us = 1e3
|
||
|
c1s = 1e9
|
||
|
c1day = 24 * 60 * 60 * c1s
|
||
|
)
|
||
|
|
||
|
frac := int64(c1day*fraction + c1us/2)
|
||
|
nanoseconds = int((frac%c1s)/c1us) * c1us
|
||
|
frac /= c1s
|
||
|
seconds = int(frac % 60)
|
||
|
frac /= 60
|
||
|
minutes = int(frac % 60)
|
||
|
hours = int(frac / 60)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// julianDateToGregorianTime provides a function to convert julian date to
|
||
|
// gregorian time.
|
||
|
func julianDateToGregorianTime(part1, part2 float64) time.Time {
|
||
|
part1I, part1F := math.Modf(part1)
|
||
|
part2I, part2F := math.Modf(part2)
|
||
|
julianDays := part1I + part2I
|
||
|
julianFraction := part1F + part2F
|
||
|
julianDays, julianFraction = shiftJulianToNoon(julianDays, julianFraction)
|
||
|
day, month, year := doTheFliegelAndVanFlandernAlgorithm(int(julianDays))
|
||
|
hours, minutes, seconds, nanoseconds := fractionOfADay(julianFraction)
|
||
|
return time.Date(year, time.Month(month), day, hours, minutes, seconds, nanoseconds, time.UTC)
|
||
|
}
|
||
|
|
||
|
// doTheFliegelAndVanFlandernAlgorithm; By this point generations of
|
||
|
// programmers have repeated the algorithm sent to the editor of
|
||
|
// "Communications of the ACM" in 1968 (published in CACM, volume 11, number
|
||
|
// 10, October 1968, p.657). None of those programmers seems to have found it
|
||
|
// necessary to explain the constants or variable names set out by Henry F.
|
||
|
// Fliegel and Thomas C. Van Flandern. Maybe one day I'll buy that journal and
|
||
|
// expand an explanation here - that day is not today.
|
||
|
func doTheFliegelAndVanFlandernAlgorithm(jd int) (day, month, year int) {
|
||
|
l := jd + 68569
|
||
|
n := (4 * l) / 146097
|
||
|
l = l - (146097*n+3)/4
|
||
|
i := (4000 * (l + 1)) / 1461001
|
||
|
l = l - (1461*i)/4 + 31
|
||
|
j := (80 * l) / 2447
|
||
|
d := l - (2447*j)/80
|
||
|
l = j / 11
|
||
|
m := j + 2 - (12 * l)
|
||
|
y := 100*(n-49) + i + l
|
||
|
return d, m, y
|
||
|
}
|
||
|
|
||
|
// timeFromExcelTime provides a function to convert an excelTime
|
||
|
// representation (stored as a floating point number) to a time.Time.
|
||
|
func timeFromExcelTime(excelTime float64, date1904 bool) time.Time {
|
||
|
var date time.Time
|
||
|
wholeDaysPart := int(excelTime)
|
||
|
// Excel uses Julian dates prior to March 1st 1900, and Gregorian
|
||
|
// thereafter.
|
||
|
if wholeDaysPart <= 61 {
|
||
|
const OFFSET1900 = 15018.0
|
||
|
const OFFSET1904 = 16480.0
|
||
|
const MJD0 float64 = 2400000.5
|
||
|
var date time.Time
|
||
|
if date1904 {
|
||
|
date = julianDateToGregorianTime(MJD0, excelTime+OFFSET1904)
|
||
|
} else {
|
||
|
date = julianDateToGregorianTime(MJD0, excelTime+OFFSET1900)
|
||
|
}
|
||
|
return date
|
||
|
}
|
||
|
floatPart := excelTime - float64(wholeDaysPart) + roundEpsilon
|
||
|
if date1904 {
|
||
|
date = excel1904Epoc
|
||
|
} else {
|
||
|
date = excel1900Epoc
|
||
|
}
|
||
|
durationPart := time.Duration(nanosInADay * floatPart)
|
||
|
date = date.AddDate(0, 0, wholeDaysPart).Add(durationPart)
|
||
|
if date.Nanosecond()/1e6 > 500 {
|
||
|
return date.Round(time.Second)
|
||
|
}
|
||
|
return date.Truncate(time.Second)
|
||
|
}
|
||
|
|
||
|
// ExcelDateToTime converts a float-based Excel date representation to a time.Time.
|
||
|
func ExcelDateToTime(excelDate float64, use1904Format bool) (time.Time, error) {
|
||
|
if excelDate < 0 {
|
||
|
return time.Time{}, newInvalidExcelDateError(excelDate)
|
||
|
}
|
||
|
return timeFromExcelTime(excelDate, use1904Format), nil
|
||
|
}
|
||
|
|
||
|
// isLeapYear determine if leap year for a given year.
|
||
|
func isLeapYear(y int) bool {
|
||
|
if y == y/400*400 {
|
||
|
return true
|
||
|
}
|
||
|
if y == y/100*100 {
|
||
|
return false
|
||
|
}
|
||
|
return y == y/4*4
|
||
|
}
|
||
|
|
||
|
// getDaysInMonth provides a function to get the days by a given year and
|
||
|
// month number.
|
||
|
func getDaysInMonth(y, m int) int {
|
||
|
if m == 2 && isLeapYear(y) {
|
||
|
return 29
|
||
|
}
|
||
|
return daysInMonth[m-1]
|
||
|
}
|
||
|
|
||
|
// validateDate provides a function to validate if a valid date by a given
|
||
|
// year, month, and day number.
|
||
|
func validateDate(y, m, d int) bool {
|
||
|
if m < 1 || m > 12 {
|
||
|
return false
|
||
|
}
|
||
|
if d < 1 {
|
||
|
return false
|
||
|
}
|
||
|
return d <= getDaysInMonth(y, m)
|
||
|
}
|
||
|
|
||
|
// formatYear converts the given year number into a 4-digit format.
|
||
|
func formatYear(y int) int {
|
||
|
if y < 1900 {
|
||
|
if y < 30 {
|
||
|
y += 2000
|
||
|
} else {
|
||
|
y += 1900
|
||
|
}
|
||
|
}
|
||
|
return y
|
||
|
}
|