package oss import ( "hash" "hash/crc64" ) // digest represents the partial evaluation of a checksum. type digest struct { crc uint64 tab *crc64.Table } // NewCRC creates a new hash.Hash64 computing the CRC64 checksum // using the polynomial represented by the Table. func NewCRC(tab *crc64.Table, init uint64) hash.Hash64 { return &digest{init, tab} } // Size returns the number of bytes sum will return. func (d *digest) Size() int { return crc64.Size } // BlockSize returns the hash's underlying block size. // The Write method must be able to accept any amount // of data, but it may operate more efficiently if all writes // are a multiple of the block size. func (d *digest) BlockSize() int { return 1 } // Reset resets the hash to its initial state. func (d *digest) Reset() { d.crc = 0 } // Write (via the embedded io.Writer interface) adds more data to the running hash. // It never returns an error. func (d *digest) Write(p []byte) (n int, err error) { d.crc = crc64.Update(d.crc, d.tab, p) return len(p), nil } // Sum64 returns CRC64 value. func (d *digest) Sum64() uint64 { return d.crc } // Sum returns hash value. func (d *digest) Sum(in []byte) []byte { s := d.Sum64() return append(in, byte(s>>56), byte(s>>48), byte(s>>40), byte(s>>32), byte(s>>24), byte(s>>16), byte(s>>8), byte(s)) } // gf2Dim dimension of GF(2) vectors (length of CRC) const gf2Dim int = 64 func gf2MatrixTimes(mat []uint64, vec uint64) uint64 { var sum uint64 for i := 0; vec != 0; i++ { if vec&1 != 0 { sum ^= mat[i] } vec >>= 1 } return sum } func gf2MatrixSquare(square []uint64, mat []uint64) { for n := 0; n < gf2Dim; n++ { square[n] = gf2MatrixTimes(mat, mat[n]) } } // CRC64Combine combines CRC64 func CRC64Combine(crc1 uint64, crc2 uint64, len2 uint64) uint64 { var even [gf2Dim]uint64 // Even-power-of-two zeros operator var odd [gf2Dim]uint64 // Odd-power-of-two zeros operator // Degenerate case if len2 == 0 { return crc1 } // Put operator for one zero bit in odd odd[0] = crc64.ECMA // CRC64 polynomial var row uint64 = 1 for n := 1; n < gf2Dim; n++ { odd[n] = row row <<= 1 } // Put operator for two zero bits in even gf2MatrixSquare(even[:], odd[:]) // Put operator for four zero bits in odd gf2MatrixSquare(odd[:], even[:]) // Apply len2 zeros to crc1, first square will put the operator for one zero byte, eight zero bits, in even for { // Apply zeros operator for this bit of len2 gf2MatrixSquare(even[:], odd[:]) if len2&1 != 0 { crc1 = gf2MatrixTimes(even[:], crc1) } len2 >>= 1 // If no more bits set, then done if len2 == 0 { break } // Another iteration of the loop with odd and even swapped gf2MatrixSquare(odd[:], even[:]) if len2&1 != 0 { crc1 = gf2MatrixTimes(odd[:], crc1) } len2 >>= 1 // If no more bits set, then done if len2 == 0 { break } } // Return combined CRC crc1 ^= crc2 return crc1 }