// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package sha3 // spongeDirection indicates the direction bytes are flowing through the sponge. type spongeDirection int const ( // spongeAbsorbing indicates that the sponge is absorbing input. spongeAbsorbing spongeDirection = iota // spongeSqueezing indicates that the sponge is being squeezed. spongeSqueezing ) const ( // maxRate is the maximum size of the internal buffer. SHAKE-256 // currently needs the largest buffer. maxRate = 168 ) type state struct { // Generic sponge components. a [25]uint64 // main state of the hash rate int // the number of bytes of state to use // dsbyte contains the "domain separation" bits and the first bit of // the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the // SHA-3 and SHAKE functions by appending bitstrings to the message. // Using a little-endian bit-ordering convention, these are "01" for SHA-3 // and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the // padding rule from section 5.1 is applied to pad the message to a multiple // of the rate, which involves adding a "1" bit, zero or more "0" bits, and // a final "1" bit. We merge the first "1" bit from the padding into dsbyte, // giving 00000110b (0x06) and 00011111b (0x1f). // [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf // "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and // Extendable-Output Functions (May 2014)" dsbyte byte i, n int // storage[i:n] is the buffer, i is only used while squeezing storage [maxRate]byte // Specific to SHA-3 and SHAKE. outputLen int // the default output size in bytes state spongeDirection // whether the sponge is absorbing or squeezing } // BlockSize returns the rate of sponge underlying this hash function. func (d *state) BlockSize() int { return d.rate } // Size returns the output size of the hash function in bytes. func (d *state) Size() int { return d.outputLen } // Reset clears the internal state by zeroing the sponge state and // the buffer indexes, and setting Sponge.state to absorbing. func (d *state) Reset() { // Zero the permutation's state. for i := range d.a { d.a[i] = 0 } d.state = spongeAbsorbing d.i, d.n = 0, 0 } func (d *state) clone() *state { ret := *d return &ret } // permute applies the KeccakF-1600 permutation. It handles // any input-output buffering. func (d *state) permute() { switch d.state { case spongeAbsorbing: // If we're absorbing, we need to xor the input into the state // before applying the permutation. xorIn(d, d.storage[:d.rate]) d.n = 0 keccakF1600(&d.a) case spongeSqueezing: // If we're squeezing, we need to apply the permutation before // copying more output. keccakF1600(&d.a) d.i = 0 copyOut(d, d.storage[:d.rate]) } } // pads appends the domain separation bits in dsbyte, applies // the multi-bitrate 10..1 padding rule, and permutes the state. func (d *state) padAndPermute() { // Pad with this instance's domain-separator bits. We know that there's // at least one byte of space in d.buf because, if it were full, // permute would have been called to empty it. dsbyte also contains the // first one bit for the padding. See the comment in the state struct. d.storage[d.n] = d.dsbyte d.n++ for d.n < d.rate { d.storage[d.n] = 0 d.n++ } // This adds the final one bit for the padding. Because of the way that // bits are numbered from the LSB upwards, the final bit is the MSB of // the last byte. d.storage[d.rate-1] ^= 0x80 // Apply the permutation d.permute() d.state = spongeSqueezing d.n = d.rate copyOut(d, d.storage[:d.rate]) } // Write absorbs more data into the hash's state. It panics if any // output has already been read. func (d *state) Write(p []byte) (written int, err error) { if d.state != spongeAbsorbing { panic("sha3: Write after Read") } written = len(p) for len(p) > 0 { if d.n == 0 && len(p) >= d.rate { // The fast path; absorb a full "rate" bytes of input and apply the permutation. xorIn(d, p[:d.rate]) p = p[d.rate:] keccakF1600(&d.a) } else { // The slow path; buffer the input until we can fill the sponge, and then xor it in. todo := d.rate - d.n if todo > len(p) { todo = len(p) } d.n += copy(d.storage[d.n:], p[:todo]) p = p[todo:] // If the sponge is full, apply the permutation. if d.n == d.rate { d.permute() } } } return } // Read squeezes an arbitrary number of bytes from the sponge. func (d *state) Read(out []byte) (n int, err error) { // If we're still absorbing, pad and apply the permutation. if d.state == spongeAbsorbing { d.padAndPermute() } n = len(out) // Now, do the squeezing. for len(out) > 0 { n := copy(out, d.storage[d.i:d.n]) d.i += n out = out[n:] // Apply the permutation if we've squeezed the sponge dry. if d.i == d.rate { d.permute() } } return } // Sum applies padding to the hash state and then squeezes out the desired // number of output bytes. It panics if any output has already been read. func (d *state) Sum(in []byte) []byte { if d.state != spongeAbsorbing { panic("sha3: Sum after Read") } // Make a copy of the original hash so that caller can keep writing // and summing. dup := d.clone() hash := make([]byte, dup.outputLen, 64) // explicit cap to allow stack allocation dup.Read(hash) return append(in, hash...) }