service/vendor/github.com/cloudwego/iasm/x86_64/encodings.go

692 lines
20 KiB
Go

//
// Copyright 2024 CloudWeGo Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package x86_64
import (
`encoding/binary`
`math`
)
/** Operand Encoding Helpers **/
func imml(v interface{}) byte {
return byte(toImmAny(v) & 0x0f)
}
func relv(v interface{}) int64 {
switch r := v.(type) {
case *Label : return 0
case RelativeOffset : return int64(r)
default : panic("invalid relative offset")
}
}
func addr(v interface{}) interface{} {
switch a := v.(*MemoryOperand).Addr; a.Type {
case Memory : return a.Memory
case Offset : return a.Offset
case Reference : return a.Reference
default : panic("invalid memory operand type")
}
}
func bcode(v interface{}) byte {
if m, ok := v.(*MemoryOperand); !ok {
panic("v is not a memory operand")
} else if m.Broadcast == 0 {
return 0
} else {
return 1
}
}
func vcode(v interface{}) byte {
switch r := v.(type) {
case XMMRegister : return byte(r)
case YMMRegister : return byte(r)
case ZMMRegister : return byte(r)
case MaskedRegister : return vcode(r.Reg)
default : panic("v is not a vector register")
}
}
func kcode(v interface{}) byte {
switch r := v.(type) {
case KRegister : return byte(r)
case XMMRegister : return 0
case YMMRegister : return 0
case ZMMRegister : return 0
case RegisterMask : return byte(r.K)
case MaskedRegister : return byte(r.Mask.K)
case *MemoryOperand : return toKcodeMem(r)
default : panic("v is not a maskable operand")
}
}
func zcode(v interface{}) byte {
switch r := v.(type) {
case KRegister : return 0
case XMMRegister : return 0
case YMMRegister : return 0
case ZMMRegister : return 0
case RegisterMask : return toZcodeRegM(r)
case MaskedRegister : return toZcodeRegM(r.Mask)
case *MemoryOperand : return toZcodeMem(r)
default : panic("v is not a maskable operand")
}
}
func lcode(v interface{}) byte {
switch r := v.(type) {
case Register8 : return byte(r & 0x07)
case Register16 : return byte(r & 0x07)
case Register32 : return byte(r & 0x07)
case Register64 : return byte(r & 0x07)
case KRegister : return byte(r & 0x07)
case MMRegister : return byte(r & 0x07)
case XMMRegister : return byte(r & 0x07)
case YMMRegister : return byte(r & 0x07)
case ZMMRegister : return byte(r & 0x07)
case MaskedRegister : return lcode(r.Reg)
default : panic("v is not a register")
}
}
func hcode(v interface{}) byte {
switch r := v.(type) {
case Register8 : return byte(r >> 3) & 1
case Register16 : return byte(r >> 3) & 1
case Register32 : return byte(r >> 3) & 1
case Register64 : return byte(r >> 3) & 1
case KRegister : return byte(r >> 3) & 1
case MMRegister : return byte(r >> 3) & 1
case XMMRegister : return byte(r >> 3) & 1
case YMMRegister : return byte(r >> 3) & 1
case ZMMRegister : return byte(r >> 3) & 1
case MaskedRegister : return hcode(r.Reg)
default : panic("v is not a register")
}
}
func ecode(v interface{}) byte {
switch r := v.(type) {
case Register8 : return byte(r >> 4) & 1
case Register16 : return byte(r >> 4) & 1
case Register32 : return byte(r >> 4) & 1
case Register64 : return byte(r >> 4) & 1
case KRegister : return byte(r >> 4) & 1
case MMRegister : return byte(r >> 4) & 1
case XMMRegister : return byte(r >> 4) & 1
case YMMRegister : return byte(r >> 4) & 1
case ZMMRegister : return byte(r >> 4) & 1
case MaskedRegister : return ecode(r.Reg)
default : panic("v is not a register")
}
}
func hlcode(v interface{}) byte {
switch r := v.(type) {
case Register8 : return toHLcodeReg8(r)
case Register16 : return byte(r & 0x0f)
case Register32 : return byte(r & 0x0f)
case Register64 : return byte(r & 0x0f)
case KRegister : return byte(r & 0x0f)
case MMRegister : return byte(r & 0x0f)
case XMMRegister : return byte(r & 0x0f)
case YMMRegister : return byte(r & 0x0f)
case ZMMRegister : return byte(r & 0x0f)
case MaskedRegister : return hlcode(r.Reg)
default : panic("v is not a register")
}
}
func ehcode(v interface{}) byte {
switch r := v.(type) {
case Register8 : return byte(r >> 3) & 0x03
case Register16 : return byte(r >> 3) & 0x03
case Register32 : return byte(r >> 3) & 0x03
case Register64 : return byte(r >> 3) & 0x03
case KRegister : return byte(r >> 3) & 0x03
case MMRegister : return byte(r >> 3) & 0x03
case XMMRegister : return byte(r >> 3) & 0x03
case YMMRegister : return byte(r >> 3) & 0x03
case ZMMRegister : return byte(r >> 3) & 0x03
case MaskedRegister : return ehcode(r.Reg)
default : panic("v is not a register")
}
}
func toImmAny(v interface{}) int64 {
if x, ok := asInt64(v); ok {
return x
} else {
panic("value is not an integer")
}
}
func toHcodeOpt(v interface{}) byte {
if v == nil {
return 0
} else {
return hcode(v)
}
}
func toEcodeVMM(v interface{}, x byte) byte {
switch r := v.(type) {
case XMMRegister : return ecode(r)
case YMMRegister : return ecode(r)
case ZMMRegister : return ecode(r)
default : return x
}
}
func toKcodeMem(v *MemoryOperand) byte {
if !v.Masked {
return 0
} else {
return byte(v.Mask.K)
}
}
func toZcodeMem(v *MemoryOperand) byte {
if !v.Masked || v.Mask.Z {
return 0
} else {
return 1
}
}
func toZcodeRegM(v RegisterMask) byte {
if v.Z {
return 1
} else {
return 0
}
}
func toHLcodeReg8(v Register8) byte {
switch v {
case AH: fallthrough
case BH: fallthrough
case CH: fallthrough
case DH: panic("ah/bh/ch/dh registers never use 4-bit encoding")
default: return byte(v & 0x0f)
}
}
/** Instruction Encoding Helpers **/
const (
_N_inst = 16
)
const (
_F_rel1 = 1 << iota
_F_rel4
)
type _Encoding struct {
len int
flags int
bytes [_N_inst]byte
encoder func(m *_Encoding, v []interface{})
}
// buf ensures len + n <= len(bytes).
func (self *_Encoding) buf(n int) []byte {
if i := self.len; i + n > _N_inst {
panic("instruction too long")
} else {
return self.bytes[i:]
}
}
// emit encodes a single byte.
func (self *_Encoding) emit(v byte) {
self.buf(1)[0] = v
self.len++
}
// imm1 encodes a single byte immediate value.
func (self *_Encoding) imm1(v int64) {
self.emit(byte(v))
}
// imm2 encodes a two-byte immediate value in little-endian.
func (self *_Encoding) imm2(v int64) {
binary.LittleEndian.PutUint16(self.buf(2), uint16(v))
self.len += 2
}
// imm4 encodes a 4-byte immediate value in little-endian.
func (self *_Encoding) imm4(v int64) {
binary.LittleEndian.PutUint32(self.buf(4), uint32(v))
self.len += 4
}
// imm8 encodes an 8-byte immediate value in little-endian.
func (self *_Encoding) imm8(v int64) {
binary.LittleEndian.PutUint64(self.buf(8), uint64(v))
self.len += 8
}
// vex2 encodes a 2-byte or 3-byte VEX prefix.
//
// 2-byte VEX prefix:
// Requires: VEX.W = 0, VEX.mmmmm = 0b00001 and VEX.B = VEX.X = 0
// +----------------+
// Byte 0: | Bits 0-7: 0xc5 |
// +----------------+
//
// +-----------+----------------+----------+--------------+
// Byte 1: | Bit 7: ~R | Bits 3-6 ~vvvv | Bit 2: L | Bits 0-1: pp |
// +-----------+----------------+----------+--------------+
//
// 3-byte VEX prefix:
// +----------------+
// Byte 0: | Bits 0-7: 0xc4 |
// +----------------+
//
// +-----------+-----------+-----------+-------------------+
// Byte 1: | Bit 7: ~R | Bit 6: ~X | Bit 5: ~B | Bits 0-4: 0b00001 |
// +-----------+-----------+-----------+-------------------+
//
// +----------+-----------------+----------+--------------+
// Byte 2: | Bit 7: 0 | Bits 3-6: ~vvvv | Bit 2: L | Bits 0-1: pp |
// +----------+-----------------+----------+--------------+
//
func (self *_Encoding) vex2(lpp byte, r byte, rm interface{}, vvvv byte) {
var b byte
var x byte
/* VEX.R must be a single-bit mask */
if r > 1 {
panic("VEX.R must be a 1-bit mask")
}
/* VEX.Lpp must be a 3-bit mask */
if lpp &^ 0b111 != 0 {
panic("VEX.Lpp must be a 3-bit mask")
}
/* VEX.vvvv must be a 4-bit mask */
if vvvv &^ 0b1111 != 0 {
panic("VEX.vvvv must be a 4-bit mask")
}
/* encode the RM bits if any */
if rm != nil {
switch v := rm.(type) {
case *Label : break
case Register : b = hcode(v)
case MemoryAddress : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
case RelativeOffset : break
default : panic("rm is expected to be a register or a memory address")
}
}
/* if VEX.B and VEX.X are zeroes, 2-byte VEX prefix can be used */
if x == 0 && b == 0 {
self.emit(0xc5)
self.emit(0xf8 ^ (r << 7) ^ (vvvv << 3) ^ lpp)
} else {
self.emit(0xc4)
self.emit(0xe1 ^ (r << 7) ^ (x << 6) ^ (b << 5))
self.emit(0x78 ^ (vvvv << 3) ^ lpp)
}
}
// vex3 encodes a 3-byte VEX or XOP prefix.
//
// 3-byte VEX/XOP prefix
// +-----------------------------------+
// Byte 0: | Bits 0-7: 0xc4 (VEX) / 0x8f (XOP) |
// +-----------------------------------+
//
// +-----------+-----------+-----------+-----------------+
// Byte 1: | Bit 7: ~R | Bit 6: ~X | Bit 5: ~B | Bits 0-4: mmmmm |
// +-----------+-----------+-----------+-----------------+
//
// +----------+-----------------+----------+--------------+
// Byte 2: | Bit 7: W | Bits 3-6: ~vvvv | Bit 2: L | Bits 0-1: pp |
// +----------+-----------------+----------+--------------+
//
func (self *_Encoding) vex3(esc byte, mmmmm byte, wlpp byte, r byte, rm interface{}, vvvv byte) {
var b byte
var x byte
/* VEX.R must be a single-bit mask */
if r > 1 {
panic("VEX.R must be a 1-bit mask")
}
/* VEX.vvvv must be a 4-bit mask */
if vvvv &^ 0b1111 != 0 {
panic("VEX.vvvv must be a 4-bit mask")
}
/* escape must be a 3-byte VEX (0xc4) or XOP (0x8f) prefix */
if esc != 0xc4 && esc != 0x8f {
panic("escape must be a 3-byte VEX (0xc4) or XOP (0x8f) prefix")
}
/* VEX.W____Lpp is expected to have no bits set except 0, 1, 2 and 7 */
if wlpp &^ 0b10000111 != 0 {
panic("VEX.W____Lpp is expected to have no bits set except 0, 1, 2 and 7")
}
/* VEX.m-mmmm is expected to be a 5-bit mask */
if mmmmm &^ 0b11111 != 0 {
panic("VEX.m-mmmm is expected to be a 5-bit mask")
}
/* encode the RM bits */
switch v := rm.(type) {
case *Label : break
case MemoryAddress : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
case RelativeOffset : break
default : panic("rm is expected to be a register or a memory address")
}
/* encode the 3-byte VEX or XOP prefix */
self.emit(esc)
self.emit(0xe0 ^ (r << 7) ^ (x << 6) ^ (b << 5) ^ mmmmm)
self.emit(0x78 ^ (vvvv << 3) ^ wlpp)
}
// evex encodes a 4-byte EVEX prefix.
func (self *_Encoding) evex(mm byte, w1pp byte, ll byte, rr byte, rm interface{}, vvvvv byte, aaa byte, zz byte, bb byte) {
var b byte
var x byte
/* EVEX.b must be a single-bit mask */
if bb > 1 {
panic("EVEX.b must be a 1-bit mask")
}
/* EVEX.z must be a single-bit mask */
if zz > 1 {
panic("EVEX.z must be a 1-bit mask")
}
/* EVEX.mm must be a 2-bit mask */
if mm &^ 0b11 != 0 {
panic("EVEX.mm must be a 2-bit mask")
}
/* EVEX.L'L must be a 2-bit mask */
if ll &^ 0b11 != 0 {
panic("EVEX.L'L must be a 2-bit mask")
}
/* EVEX.R'R must be a 2-bit mask */
if rr &^ 0b11 != 0 {
panic("EVEX.R'R must be a 2-bit mask")
}
/* EVEX.aaa must be a 3-bit mask */
if aaa &^ 0b111 != 0 {
panic("EVEX.aaa must be a 3-bit mask")
}
/* EVEX.v'vvvv must be a 5-bit mask */
if vvvvv &^ 0b11111 != 0 {
panic("EVEX.v'vvvv must be a 5-bit mask")
}
/* EVEX.W____1pp is expected to have no bits set except 0, 1, 2, and 7 */
if w1pp &^ 0b10000011 != 0b100 {
panic("EVEX.W____1pp is expected to have no bits set except 0, 1, 2, and 7")
}
/* extract bits from EVEX.R'R and EVEX.v'vvvv */
r1, r0 := rr >> 1, rr & 1
v1, v0 := vvvvv >> 4, vvvvv & 0b1111
/* encode the RM bits if any */
if rm != nil {
switch m := rm.(type) {
case *Label : break
case Register : b, x = hcode(m), ecode(m)
case MemoryAddress : b, x, v1 = toHcodeOpt(m.Base), toHcodeOpt(m.Index), toEcodeVMM(m.Index, v1)
case RelativeOffset : break
default : panic("rm is expected to be a register or a memory address")
}
}
/* EVEX prefix bytes */
p0 := (r0 << 7) | (x << 6) | (b << 5) | (r1 << 4) | mm
p1 := (v0 << 3) | w1pp
p2 := (zz << 7) | (ll << 5) | (b << 4) | (v1 << 3) | aaa
/* p0: invert RXBR' (bits 4-7)
* p1: invert vvvv (bits 3-6)
* p2: invert V' (bit 3) */
self.emit(0x62)
self.emit(p0 ^ 0xf0)
self.emit(p1 ^ 0x78)
self.emit(p2 ^ 0x08)
}
// rexm encodes a mandatory REX prefix.
func (self *_Encoding) rexm(w byte, r byte, rm interface{}) {
var b byte
var x byte
/* REX.R must be 0 or 1 */
if r != 0 && r != 1 {
panic("REX.R must be 0 or 1")
}
/* REX.W must be 0 or 1 */
if w != 0 && w != 1 {
panic("REX.W must be 0 or 1")
}
/* encode the RM bits */
switch v := rm.(type) {
case *Label : break
case MemoryAddress : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
case RelativeOffset : break
default : panic("rm is expected to be a register or a memory address")
}
/* encode the REX prefix */
self.emit(0x40 | (w << 3) | (r << 2) | (x << 1) | b)
}
// rexo encodes an optional REX prefix.
func (self *_Encoding) rexo(r byte, rm interface{}, force bool) {
var b byte
var x byte
/* REX.R must be 0 or 1 */
if r != 0 && r != 1 {
panic("REX.R must be 0 or 1")
}
/* encode the RM bits */
switch v := rm.(type) {
case *Label : break
case Register : b = hcode(v)
case MemoryAddress : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
case RelativeOffset : break
default : panic("rm is expected to be a register or a memory address")
}
/* if REX.R, REX.X, and REX.B are all zeroes, REX prefix can be omitted */
if force || r != 0 || x != 0 || b != 0 {
self.emit(0x40 | (r << 2) | (x << 1) | b)
}
}
// mrsd encodes ModR/M, SIB and Displacement.
//
// ModR/M byte
// +----------------+---------------+---------------+
// | Bits 6-7: Mode | Bits 3-5: Reg | Bits 0-2: R/M |
// +----------------+---------------+---------------+
//
// SIB byte
// +-----------------+-----------------+----------------+
// | Bits 6-7: Scale | Bits 3-5: Index | Bits 0-2: Base |
// +-----------------+-----------------+----------------+
//
func (self *_Encoding) mrsd(reg byte, rm interface{}, disp8v int32) {
var ok bool
var mm MemoryAddress
var ro RelativeOffset
/* ModRM encodes the lower 3-bit of the register */
if reg > 7 {
panic("invalid register bits")
}
/* check the displacement scale */
switch disp8v {
case 1: break
case 2: break
case 4: break
case 8: break
case 16: break
case 32: break
case 64: break
default: panic("invalid displacement size")
}
/* special case: unresolved labels, assuming a zero offset */
if _, ok = rm.(*Label); ok {
self.emit(0x05 | (reg << 3))
self.imm4(0)
return
}
/* special case: RIP-relative offset
* ModRM.Mode == 0 and ModeRM.R/M == 5 indicates (rip + disp32) addressing */
if ro, ok = rm.(RelativeOffset); ok {
self.emit(0x05 | (reg << 3))
self.imm4(int64(ro))
return
}
/* must be a generic memory address */
if mm, ok = rm.(MemoryAddress); !ok {
panic("rm must be a memory address")
}
/* absolute addressing, encoded as disp(%rbp,%rsp,1) */
if mm.Base == nil && mm.Index == nil {
self.emit(0x04 | (reg << 3))
self.emit(0x25)
self.imm4(int64(mm.Displacement))
return
}
/* no SIB byte */
if mm.Index == nil && lcode(mm.Base) != 0b100 {
cc := lcode(mm.Base)
dv := mm.Displacement
/* ModRM.Mode == 0 (no displacement) */
if dv == 0 && mm.Base != RBP && mm.Base != R13 {
if cc == 0b101 {
panic("rbp/r13 is not encodable as a base register (interpreted as disp32 address)")
} else {
self.emit((reg << 3) | cc)
return
}
}
/* ModRM.Mode == 1 (8-bit displacement) */
if dq := dv / disp8v; dq >= math.MinInt8 && dq <= math.MaxInt8 && dv % disp8v == 0 {
self.emit(0x40 | (reg << 3) | cc)
self.imm1(int64(dq))
return
}
/* ModRM.Mode == 2 (32-bit displacement) */
self.emit(0x80 | (reg << 3) | cc)
self.imm4(int64(mm.Displacement))
return
}
/* all encodings below use ModRM.R/M = 4 (0b100) to indicate the presence of SIB */
if mm.Index == RSP {
panic("rsp is not encodable as an index register (interpreted as no index)")
}
/* index = 4 (0b100) denotes no-index encoding */
var scale byte
var index byte = 0x04
/* encode the scale byte */
if mm.Scale != 0 {
switch mm.Scale {
case 1 : scale = 0
case 2 : scale = 1
case 4 : scale = 2
case 8 : scale = 3
default : panic("invalid scale value")
}
}
/* encode the index byte */
if mm.Index != nil {
index = lcode(mm.Index)
}
/* SIB.Base = 5 (0b101) and ModRM.Mode = 0 indicates no-base encoding with disp32 */
if mm.Base == nil {
self.emit((reg << 3) | 0b100)
self.emit((scale << 6) | (index << 3) | 0b101)
self.imm4(int64(mm.Displacement))
return
}
/* base L-code & displacement value */
cc := lcode(mm.Base)
dv := mm.Displacement
/* ModRM.Mode == 0 (no displacement) */
if dv == 0 && cc != 0b101 {
self.emit((reg << 3) | 0b100)
self.emit((scale << 6) | (index << 3) | cc)
return
}
/* ModRM.Mode == 1 (8-bit displacement) */
if dq := dv / disp8v; dq >= math.MinInt8 && dq <= math.MaxInt8 && dv % disp8v == 0 {
self.emit(0x44 | (reg << 3))
self.emit((scale << 6) | (index << 3) | cc)
self.imm1(int64(dq))
return
}
/* ModRM.Mode == 2 (32-bit displacement) */
self.emit(0x84 | (reg << 3))
self.emit((scale << 6) | (index << 3) | cc)
self.imm4(int64(mm.Displacement))
}
// encode invokes the encoder to encode this instruction.
func (self *_Encoding) encode(v []interface{}) int {
self.len = 0
self.encoder(self, v)
return self.len
}