service/vendor/github.com/klauspost/compress/fse/compress.go

684 lines
17 KiB
Go

// Copyright 2018 Klaus Post. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
package fse
import (
"errors"
"fmt"
)
// Compress the input bytes. Input must be < 2GB.
// Provide a Scratch buffer to avoid memory allocations.
// Note that the output is also kept in the scratch buffer.
// If input is too hard to compress, ErrIncompressible is returned.
// If input is a single byte value repeated ErrUseRLE is returned.
func Compress(in []byte, s *Scratch) ([]byte, error) {
if len(in) <= 1 {
return nil, ErrIncompressible
}
if len(in) > (2<<30)-1 {
return nil, errors.New("input too big, must be < 2GB")
}
s, err := s.prepare(in)
if err != nil {
return nil, err
}
// Create histogram, if none was provided.
maxCount := s.maxCount
if maxCount == 0 {
maxCount = s.countSimple(in)
}
// Reset for next run.
s.clearCount = true
s.maxCount = 0
if maxCount == len(in) {
// One symbol, use RLE
return nil, ErrUseRLE
}
if maxCount == 1 || maxCount < (len(in)>>7) {
// Each symbol present maximum once or too well distributed.
return nil, ErrIncompressible
}
s.optimalTableLog()
err = s.normalizeCount()
if err != nil {
return nil, err
}
err = s.writeCount()
if err != nil {
return nil, err
}
if false {
err = s.validateNorm()
if err != nil {
return nil, err
}
}
err = s.buildCTable()
if err != nil {
return nil, err
}
err = s.compress(in)
if err != nil {
return nil, err
}
s.Out = s.bw.out
// Check if we compressed.
if len(s.Out) >= len(in) {
return nil, ErrIncompressible
}
return s.Out, nil
}
// cState contains the compression state of a stream.
type cState struct {
bw *bitWriter
stateTable []uint16
state uint16
}
// init will initialize the compression state to the first symbol of the stream.
func (c *cState) init(bw *bitWriter, ct *cTable, tableLog uint8, first symbolTransform) {
c.bw = bw
c.stateTable = ct.stateTable
nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
im := int32((nbBitsOut << 16) - first.deltaNbBits)
lu := (im >> nbBitsOut) + first.deltaFindState
c.state = c.stateTable[lu]
}
// encode the output symbol provided and write it to the bitstream.
func (c *cState) encode(symbolTT symbolTransform) {
nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
c.bw.addBits16NC(c.state, uint8(nbBitsOut))
c.state = c.stateTable[dstState]
}
// encode the output symbol provided and write it to the bitstream.
func (c *cState) encodeZero(symbolTT symbolTransform) {
nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
c.bw.addBits16ZeroNC(c.state, uint8(nbBitsOut))
c.state = c.stateTable[dstState]
}
// flush will write the tablelog to the output and flush the remaining full bytes.
func (c *cState) flush(tableLog uint8) {
c.bw.flush32()
c.bw.addBits16NC(c.state, tableLog)
c.bw.flush()
}
// compress is the main compression loop that will encode the input from the last byte to the first.
func (s *Scratch) compress(src []byte) error {
if len(src) <= 2 {
return errors.New("compress: src too small")
}
tt := s.ct.symbolTT[:256]
s.bw.reset(s.Out)
// Our two states each encodes every second byte.
// Last byte encoded (first byte decoded) will always be encoded by c1.
var c1, c2 cState
// Encode so remaining size is divisible by 4.
ip := len(src)
if ip&1 == 1 {
c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
c1.encodeZero(tt[src[ip-3]])
ip -= 3
} else {
c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
ip -= 2
}
if ip&2 != 0 {
c2.encodeZero(tt[src[ip-1]])
c1.encodeZero(tt[src[ip-2]])
ip -= 2
}
// Main compression loop.
switch {
case !s.zeroBits && s.actualTableLog <= 8:
// We can encode 4 symbols without requiring a flush.
// We do not need to check if any output is 0 bits.
for ip >= 4 {
s.bw.flush32()
v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
c2.encode(tt[v0])
c1.encode(tt[v1])
c2.encode(tt[v2])
c1.encode(tt[v3])
ip -= 4
}
case !s.zeroBits:
// We do not need to check if any output is 0 bits.
for ip >= 4 {
s.bw.flush32()
v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
c2.encode(tt[v0])
c1.encode(tt[v1])
s.bw.flush32()
c2.encode(tt[v2])
c1.encode(tt[v3])
ip -= 4
}
case s.actualTableLog <= 8:
// We can encode 4 symbols without requiring a flush
for ip >= 4 {
s.bw.flush32()
v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
c2.encodeZero(tt[v0])
c1.encodeZero(tt[v1])
c2.encodeZero(tt[v2])
c1.encodeZero(tt[v3])
ip -= 4
}
default:
for ip >= 4 {
s.bw.flush32()
v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
c2.encodeZero(tt[v0])
c1.encodeZero(tt[v1])
s.bw.flush32()
c2.encodeZero(tt[v2])
c1.encodeZero(tt[v3])
ip -= 4
}
}
// Flush final state.
// Used to initialize state when decoding.
c2.flush(s.actualTableLog)
c1.flush(s.actualTableLog)
return s.bw.close()
}
// writeCount will write the normalized histogram count to header.
// This is read back by readNCount.
func (s *Scratch) writeCount() error {
var (
tableLog = s.actualTableLog
tableSize = 1 << tableLog
previous0 bool
charnum uint16
maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3
// Write Table Size
bitStream = uint32(tableLog - minTablelog)
bitCount = uint(4)
remaining = int16(tableSize + 1) /* +1 for extra accuracy */
threshold = int16(tableSize)
nbBits = uint(tableLog + 1)
)
if cap(s.Out) < maxHeaderSize {
s.Out = make([]byte, 0, s.br.remain()+maxHeaderSize)
}
outP := uint(0)
out := s.Out[:maxHeaderSize]
// stops at 1
for remaining > 1 {
if previous0 {
start := charnum
for s.norm[charnum] == 0 {
charnum++
}
for charnum >= start+24 {
start += 24
bitStream += uint32(0xFFFF) << bitCount
out[outP] = byte(bitStream)
out[outP+1] = byte(bitStream >> 8)
outP += 2
bitStream >>= 16
}
for charnum >= start+3 {
start += 3
bitStream += 3 << bitCount
bitCount += 2
}
bitStream += uint32(charnum-start) << bitCount
bitCount += 2
if bitCount > 16 {
out[outP] = byte(bitStream)
out[outP+1] = byte(bitStream >> 8)
outP += 2
bitStream >>= 16
bitCount -= 16
}
}
count := s.norm[charnum]
charnum++
max := (2*threshold - 1) - remaining
if count < 0 {
remaining += count
} else {
remaining -= count
}
count++ // +1 for extra accuracy
if count >= threshold {
count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
}
bitStream += uint32(count) << bitCount
bitCount += nbBits
if count < max {
bitCount--
}
previous0 = count == 1
if remaining < 1 {
return errors.New("internal error: remaining<1")
}
for remaining < threshold {
nbBits--
threshold >>= 1
}
if bitCount > 16 {
out[outP] = byte(bitStream)
out[outP+1] = byte(bitStream >> 8)
outP += 2
bitStream >>= 16
bitCount -= 16
}
}
out[outP] = byte(bitStream)
out[outP+1] = byte(bitStream >> 8)
outP += (bitCount + 7) / 8
if charnum > s.symbolLen {
return errors.New("internal error: charnum > s.symbolLen")
}
s.Out = out[:outP]
return nil
}
// symbolTransform contains the state transform for a symbol.
type symbolTransform struct {
deltaFindState int32
deltaNbBits uint32
}
// String prints values as a human readable string.
func (s symbolTransform) String() string {
return fmt.Sprintf("dnbits: %08x, fs:%d", s.deltaNbBits, s.deltaFindState)
}
// cTable contains tables used for compression.
type cTable struct {
tableSymbol []byte
stateTable []uint16
symbolTT []symbolTransform
}
// allocCtable will allocate tables needed for compression.
// If existing tables a re big enough, they are simply re-used.
func (s *Scratch) allocCtable() {
tableSize := 1 << s.actualTableLog
// get tableSymbol that is big enough.
if cap(s.ct.tableSymbol) < tableSize {
s.ct.tableSymbol = make([]byte, tableSize)
}
s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
ctSize := tableSize
if cap(s.ct.stateTable) < ctSize {
s.ct.stateTable = make([]uint16, ctSize)
}
s.ct.stateTable = s.ct.stateTable[:ctSize]
if cap(s.ct.symbolTT) < 256 {
s.ct.symbolTT = make([]symbolTransform, 256)
}
s.ct.symbolTT = s.ct.symbolTT[:256]
}
// buildCTable will populate the compression table so it is ready to be used.
func (s *Scratch) buildCTable() error {
tableSize := uint32(1 << s.actualTableLog)
highThreshold := tableSize - 1
var cumul [maxSymbolValue + 2]int16
s.allocCtable()
tableSymbol := s.ct.tableSymbol[:tableSize]
// symbol start positions
{
cumul[0] = 0
for ui, v := range s.norm[:s.symbolLen-1] {
u := byte(ui) // one less than reference
if v == -1 {
// Low proba symbol
cumul[u+1] = cumul[u] + 1
tableSymbol[highThreshold] = u
highThreshold--
} else {
cumul[u+1] = cumul[u] + v
}
}
// Encode last symbol separately to avoid overflowing u
u := int(s.symbolLen - 1)
v := s.norm[s.symbolLen-1]
if v == -1 {
// Low proba symbol
cumul[u+1] = cumul[u] + 1
tableSymbol[highThreshold] = byte(u)
highThreshold--
} else {
cumul[u+1] = cumul[u] + v
}
if uint32(cumul[s.symbolLen]) != tableSize {
return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
}
cumul[s.symbolLen] = int16(tableSize) + 1
}
// Spread symbols
s.zeroBits = false
{
step := tableStep(tableSize)
tableMask := tableSize - 1
var position uint32
// if any symbol > largeLimit, we may have 0 bits output.
largeLimit := int16(1 << (s.actualTableLog - 1))
for ui, v := range s.norm[:s.symbolLen] {
symbol := byte(ui)
if v > largeLimit {
s.zeroBits = true
}
for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
tableSymbol[position] = symbol
position = (position + step) & tableMask
for position > highThreshold {
position = (position + step) & tableMask
} /* Low proba area */
}
}
// Check if we have gone through all positions
if position != 0 {
return errors.New("position!=0")
}
}
// Build table
table := s.ct.stateTable
{
tsi := int(tableSize)
for u, v := range tableSymbol {
// TableU16 : sorted by symbol order; gives next state value
table[cumul[v]] = uint16(tsi + u)
cumul[v]++
}
}
// Build Symbol Transformation Table
{
total := int16(0)
symbolTT := s.ct.symbolTT[:s.symbolLen]
tableLog := s.actualTableLog
tl := (uint32(tableLog) << 16) - (1 << tableLog)
for i, v := range s.norm[:s.symbolLen] {
switch v {
case 0:
case -1, 1:
symbolTT[i].deltaNbBits = tl
symbolTT[i].deltaFindState = int32(total - 1)
total++
default:
maxBitsOut := uint32(tableLog) - highBits(uint32(v-1))
minStatePlus := uint32(v) << maxBitsOut
symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
symbolTT[i].deltaFindState = int32(total - v)
total += v
}
}
if total != int16(tableSize) {
return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
}
}
return nil
}
// countSimple will create a simple histogram in s.count.
// Returns the biggest count.
// Does not update s.clearCount.
func (s *Scratch) countSimple(in []byte) (max int) {
for _, v := range in {
s.count[v]++
}
m := uint32(0)
for i, v := range s.count[:] {
if v > m {
m = v
}
if v > 0 {
s.symbolLen = uint16(i) + 1
}
}
return int(m)
}
// minTableLog provides the minimum logSize to safely represent a distribution.
func (s *Scratch) minTableLog() uint8 {
minBitsSrc := highBits(uint32(s.br.remain()-1)) + 1
minBitsSymbols := highBits(uint32(s.symbolLen-1)) + 2
if minBitsSrc < minBitsSymbols {
return uint8(minBitsSrc)
}
return uint8(minBitsSymbols)
}
// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
func (s *Scratch) optimalTableLog() {
tableLog := s.TableLog
minBits := s.minTableLog()
maxBitsSrc := uint8(highBits(uint32(s.br.remain()-1))) - 2
if maxBitsSrc < tableLog {
// Accuracy can be reduced
tableLog = maxBitsSrc
}
if minBits > tableLog {
tableLog = minBits
}
// Need a minimum to safely represent all symbol values
if tableLog < minTablelog {
tableLog = minTablelog
}
if tableLog > maxTableLog {
tableLog = maxTableLog
}
s.actualTableLog = tableLog
}
var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
// normalizeCount will normalize the count of the symbols so
// the total is equal to the table size.
func (s *Scratch) normalizeCount() error {
var (
tableLog = s.actualTableLog
scale = 62 - uint64(tableLog)
step = (1 << 62) / uint64(s.br.remain())
vStep = uint64(1) << (scale - 20)
stillToDistribute = int16(1 << tableLog)
largest int
largestP int16
lowThreshold = (uint32)(s.br.remain() >> tableLog)
)
for i, cnt := range s.count[:s.symbolLen] {
// already handled
// if (count[s] == s.length) return 0; /* rle special case */
if cnt == 0 {
s.norm[i] = 0
continue
}
if cnt <= lowThreshold {
s.norm[i] = -1
stillToDistribute--
} else {
proba := (int16)((uint64(cnt) * step) >> scale)
if proba < 8 {
restToBeat := vStep * uint64(rtbTable[proba])
v := uint64(cnt)*step - (uint64(proba) << scale)
if v > restToBeat {
proba++
}
}
if proba > largestP {
largestP = proba
largest = i
}
s.norm[i] = proba
stillToDistribute -= proba
}
}
if -stillToDistribute >= (s.norm[largest] >> 1) {
// corner case, need another normalization method
return s.normalizeCount2()
}
s.norm[largest] += stillToDistribute
return nil
}
// Secondary normalization method.
// To be used when primary method fails.
func (s *Scratch) normalizeCount2() error {
const notYetAssigned = -2
var (
distributed uint32
total = uint32(s.br.remain())
tableLog = s.actualTableLog
lowThreshold = total >> tableLog
lowOne = (total * 3) >> (tableLog + 1)
)
for i, cnt := range s.count[:s.symbolLen] {
if cnt == 0 {
s.norm[i] = 0
continue
}
if cnt <= lowThreshold {
s.norm[i] = -1
distributed++
total -= cnt
continue
}
if cnt <= lowOne {
s.norm[i] = 1
distributed++
total -= cnt
continue
}
s.norm[i] = notYetAssigned
}
toDistribute := (1 << tableLog) - distributed
if (total / toDistribute) > lowOne {
// risk of rounding to zero
lowOne = (total * 3) / (toDistribute * 2)
for i, cnt := range s.count[:s.symbolLen] {
if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
s.norm[i] = 1
distributed++
total -= cnt
continue
}
}
toDistribute = (1 << tableLog) - distributed
}
if distributed == uint32(s.symbolLen)+1 {
// all values are pretty poor;
// probably incompressible data (should have already been detected);
// find max, then give all remaining points to max
var maxV int
var maxC uint32
for i, cnt := range s.count[:s.symbolLen] {
if cnt > maxC {
maxV = i
maxC = cnt
}
}
s.norm[maxV] += int16(toDistribute)
return nil
}
if total == 0 {
// all of the symbols were low enough for the lowOne or lowThreshold
for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
if s.norm[i] > 0 {
toDistribute--
s.norm[i]++
}
}
return nil
}
var (
vStepLog = 62 - uint64(tableLog)
mid = uint64((1 << (vStepLog - 1)) - 1)
rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
tmpTotal = mid
)
for i, cnt := range s.count[:s.symbolLen] {
if s.norm[i] == notYetAssigned {
var (
end = tmpTotal + uint64(cnt)*rStep
sStart = uint32(tmpTotal >> vStepLog)
sEnd = uint32(end >> vStepLog)
weight = sEnd - sStart
)
if weight < 1 {
return errors.New("weight < 1")
}
s.norm[i] = int16(weight)
tmpTotal = end
}
}
return nil
}
// validateNorm validates the normalized histogram table.
func (s *Scratch) validateNorm() (err error) {
var total int
for _, v := range s.norm[:s.symbolLen] {
if v >= 0 {
total += int(v)
} else {
total -= int(v)
}
}
defer func() {
if err == nil {
return
}
fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
for i, v := range s.norm[:s.symbolLen] {
fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
}
}()
if total != (1 << s.actualTableLog) {
return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
}
for i, v := range s.count[s.symbolLen:] {
if v != 0 {
return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
}
}
return nil
}