package miniredis import ( "math" "github.com/alicebob/miniredis/v2/geohash" ) func toGeohash(long, lat float64) uint64 { return geohash.EncodeIntWithPrecision(lat, long, 52) } func fromGeohash(score uint64) (float64, float64) { lat, long := geohash.DecodeIntWithPrecision(score, 52) return long, lat } // haversin(θ) function func hsin(theta float64) float64 { return math.Pow(math.Sin(theta/2), 2) } // distance function returns the distance (in meters) between two points of // a given longitude and latitude relatively accurately (using a spherical // approximation of the Earth) through the Haversin Distance Formula for // great arc distance on a sphere with accuracy for small distances // point coordinates are supplied in degrees and converted into rad. in the func // distance returned is meters // http://en.wikipedia.org/wiki/Haversine_formula // Source: https://gist.github.com/cdipaolo/d3f8db3848278b49db68 func distance(lat1, lon1, lat2, lon2 float64) float64 { // convert to radians // must cast radius as float to multiply later var la1, lo1, la2, lo2 float64 la1 = lat1 * math.Pi / 180 lo1 = lon1 * math.Pi / 180 la2 = lat2 * math.Pi / 180 lo2 = lon2 * math.Pi / 180 earth := 6372797.560856 // Earth radius in METERS, according to src/geohash_helper.c // calculate h := hsin(la2-la1) + math.Cos(la1)*math.Cos(la2)*hsin(lo2-lo1) return 2 * earth * math.Asin(math.Sqrt(h)) }